旧版网站
当前位置: 首页 > 师资队伍 > 教师风采 > 正文

李小娟

【作者: | 发布日期:2023-08-03 | 浏览次数:

姓名:李小娟

职称:讲师

学位学历:博士、博士研究生

职务:

一、个人基本信息

李小娟,女,博士,毕业于山东大学齐鲁证券金融研究院。研究方向为金融数学与金融工程,主要研究兴趣是非线性期望理论和随机控制理论。在国际重要学术期刊Science China - Mathematics、Transactions of the American Mathematical Society等发表SCI论文10余篇。主持山东省自然科学基金一项,并参与国家自然科学基金项目多项。积极指导学生参加山东省大学生数学竞赛,并多次获奖。

二、承担课程

数学分析

三、主要研究方向

金融数学与金融工程

四、学术兼职

山东省大数据研究会理事会理事

五、主持的教学科研项目

1、g-期望和G-期望中的几个问题(ZR2014AP005),山东省自然科学基金,2014.10-2016.10.

2、互联网背景下高等数学微视频习题课教学模式的创新研究(500007),校级教研项目,2018.4.

六、代表性学术成果

1. LI XiaoJuan. Some properties of g-convex functions. Science China-Mathematics (2013) 56 (10): 2117–2122

2. Mingshang Hu, Shaolin Ji, Xiaojuan Li. BSDEs driven by G-Brownian motion under degenerate case and its application to the regularity of fully nonlinear PDEs. Transactions of the American Mathematical Society (2024) 377 (5): 3287–3323;

3.Mingshang Hu, Shaolin Ji, Xiaojuan Li(通讯) Dynamic programming principle and Hamilton-Jacobi-Bellman equation under nonlinear expectation. ESAIM: Control Optimisation and Calculus of Variations (2022) 28:1–21

4. Xiaojuan Li, Relationship between maximum principle and dynamic programming principle for stochastic recursive optimal control problem under volatility uncertainty. Optimal Control Applications and Methods (2023);2457-2475.

5. Xiaojuan Li, Forward-backward stochastic differential equations driven by G-Brownian motion under weakly coupling condition, Journal of Mathematical Analysis and Applications 20235261-19

6. Xiaojuan Li, Xinpeng Li. On the capacity for degenerated G-Brownian motion and its application. Electronic Communication in Probability,(202328:1–9.

7. Xiaojuan Li. On the integral representation of g-expectations with terminal constraints.  Journal of Mathematical Analysis and Applications (2017) 452: 16–268. Mingshang Hu, Xiaojuan Li. Independence Under the G-Expectation Framework. Journal of Theoretical Probability (2014) 27:1011–1020

9. Mingshang Hu,Xiaojuan Li,Xinpeng Li. Convergence rate of Pengs law large numbers under sublinear expectations. Probability, Uncertainty and Quantitative Risk (2021) 6:261-266.