姓名:李小娟
职称:讲师
学位学历:博士、博士研究生
职务:无
一、个人基本信息
李小娟,女,博士,毕业于山东大学齐鲁证券金融研究院。研究方向为金融数学与金融工程,主要研究兴趣是非线性期望理论和随机控制理论。在国际重要学术期刊Science China - Mathematics、Transactions of the American Mathematical Society等发表SCI论文10余篇。主持山东省自然科学基金一项,并参与国家自然科学基金项目多项。积极指导学生参加山东省大学生数学竞赛,并多次获奖。
二、承担课程
数学分析
三、主要研究方向
金融数学与金融工程
四、学术兼职
山东省大数据研究会理事会理事
五、主持的教学科研项目
1、g-期望和G-期望中的几个问题(ZR2014AP005),山东省自然科学基金,2014.10-2016.10.
2、互联网背景下高等数学微视频习题课教学模式的创新研究(500007),校级教研项目,2018.4.
六、代表性学术成果
1. LI XiaoJuan. Some properties of g-convex functions. Science China-Mathematics (2013) 56 (10): 2117–2122;
2. Mingshang Hu, Shaolin Ji, Xiaojuan Li. BSDEs driven by G-Brownian motion under degenerate case and its application to the regularity of fully nonlinear PDEs. Transactions of the American Mathematical Society (2024) 377 (5): 3287–3323;
3.Mingshang Hu, Shaolin Ji, Xiaojuan Li(通讯) Dynamic programming principle and Hamilton-Jacobi-Bellman equation under nonlinear expectation. ESAIM: Control Optimisation and Calculus of Variations (2022) 28:1–21;
4. Xiaojuan Li, Relationship between maximum principle and dynamic programming principle for stochastic recursive optimal control problem under volatility uncertainty. Optimal Control Applications and Methods (2023);2457-2475.
5. Xiaojuan Li, Forward-backward stochastic differential equations driven by G-Brownian motion under weakly coupling condition, Journal of Mathematical Analysis and Applications (2023)526,1-19
6. Xiaojuan Li, Xinpeng Li. On the capacity for degenerated G-Brownian motion and its application. Electronic Communication in Probability,(2023)28:1–9.
7. Xiaojuan Li. On the integral representation of g-expectations with terminal constraints. Journal of Mathematical Analysis and Applications (2017) 452: 16–26;8. Mingshang Hu, Xiaojuan Li. Independence Under the G-Expectation Framework. Journal of Theoretical Probability (2014) 27:1011–1020;
9. Mingshang Hu,Xiaojuan Li,Xinpeng Li. Convergence rate of Peng’s law large numbers under sublinear expectations. Probability, Uncertainty and Quantitative Risk (2021) 6:261-266.